

THE WATERLOAN SYSTEM

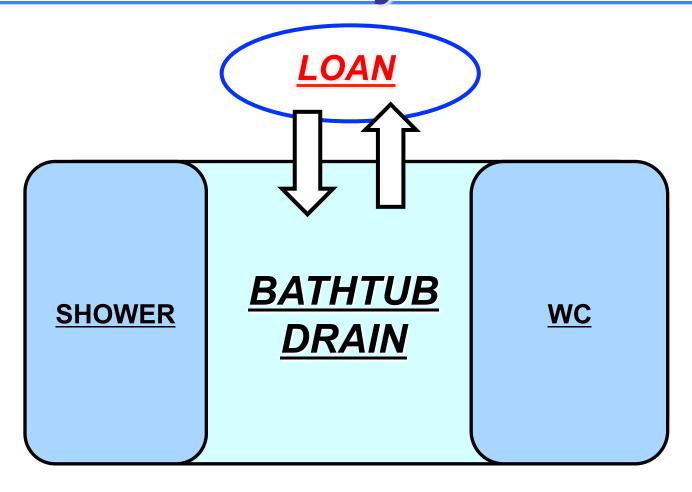
Cinardi Luigi Crivellari Francesco Piantanida Silvia Rota B. Isabella Silvestri Giulia

Problem

- -Accessibility to safe water: majority of diseases are caused by polluted and un-safe water
- -Unhealthy sanitation are reason of social problems

Find an innovative and sustainable solution for at least 100 million people in the next 5 years

Water Access


Worst old case

- -50000 people
- -18 Wc
- -20 liter per person

New Scenario

- -500 people
- -1 toilette
- -5 showers
- -30 liter per person

Waterloan System

Reverse-Osmosis

- 1) Strong push on a concentrated liquid
- 2) Obliges water to pass through a membrane
- 3) Water lose all the impurity contained in it
- 4) clean and safe water,
- -> the mesh of the membrane must be very small, in the dimension of 0.005µm (micrometer).

Numbers

Daily water need (litres)	
Persons per sanitary unit	
Total persons served	

Sanitary units needed per type

Types of sanitary units

Total dailty water need (litres)

Water withdrawal for personal usage (litres)

On site local usage (litres)

Recovered water from withdrawal (litres)

Total water for depuration (litres)

Depurated water (litres)

Daily water need after depuration (litres)

Saving

Best scenario	Worst scenario
30	30
500	500
2000	2000
4	4
2	2
60000	60000
20000	20000
40000	40000
5000	2000
45000	42000
33750	16800
26250	43200
56%	28%

Conclusions

1) DEMAND-BASED

- It starts from the daily personal water need (30l/day)

2) AVAILABILITY

- How much? The exact amount needed thanks to recovery from recycling
- How often? Every day on a continuous cycle recycling
- Maintenance and Energy? Local with energy supply tailored on local resources

3) ACCESSIBILITY

- < 15-30 minutes walking distance
- Cost based on actual consumption subtracting recycled amount
- Education to water reuse and recycle to be provided

Conclusions

4) DRINKABILITY

- 75% of drinkable water after depuration
- Stanford University innovation as future step

5) SUSTAINABILITY

- The system is self-sustaining and affordable
- Low-cost technology to be implemented based on Stanford University innovation

6) SCALABILITY

- Based on local recycling rather then full water transport